Request more information for
MeltFlow
The software tool MeltFlow-VAR utilizes advanced CFD techniques that have been specifically developed for a detailed and efficient analysis of DC electromagnetics, and fluid flow, heat transfer, phase change, and alloy element redistribution phenomena occurring in the VAR process. Hence, MeltFlow-VAR enables a comprehensive, accurate, and efficient analysis of the entire process to predict the pool evolution, and the thermal history, distributions of concentrations of alloying elements, Local Solidification Time (LST), primary and secondary dendrite arm spacings, and freckle formation probabilities in the ingot produced.
MeltFlow-VAR* is very easy-to-use and flexible. The user interface allows easy specification of the process geometry, operating conditions, and alloy properties. The results of analysis are visualized in a seamless manner using Tecplot - a powerful data visualization software.
Leading specialty metals companies are actively using MeltFlow-VAR for refinement of the processing conditions of multiple stages of the existing VAR processes and their scale-up to larger sizes for producing ingots of titanium alloys, superalloys, and steels. These productivity gains have resulted in very significant cost savings during process design and enabled manufacturing of ingots with improved chemical composition and metallurgical structure.
(*MeltFlow-VAR was formerly called COMPACT-VAR.)
The VAR process uses DC power to strike an arc between the electrode and the ingot surfaces causing the electrode to melt. The molten metal droplets fall into a water-cooled mold. The electrode is continuously advanced as it melts to build up an ingot of improved structure and composition.
MeltFlow-VAR performs a rigorous analysis of the process by considering all the physical phenomena as listed below:
The control-volume method is used for performing the solution of the governing equations in an axisymmetric domain. The computational method incorporates many algorithms that address specific aspects of the VAR process as described below:
Thus, MeltFlow-VAR provides a robust and efficient calculation of the transient behavior of the ingot during the entire process.
MeltFlow-VAR allows easy creation of a process model by specifying ingot geometry, temperature-dependent alloy properties, and melt schedule through a user-friendly graphical interface. Results of analysis are conveniently examined using Tecplot - a powerful visualization software.
MeltFlow-VAR has been shown to accurately predict the observed pool profiles in superalloy and titanium alloy ingots, and alloy concentrations in titanium alloy ingots in practical VAR processes. It is being actively used in the following manner by leading specialty metals companies to obtain substantial cost-savings in process design:
The computational method and its application for the analysis of a practical VAR process of a Titanium Alloy is discussed in a technical paper presented at the Ti-2007 Conference. It can be downloaded from the following link:
Click here for downloading the brochure of MeltFlow-VAR.