Request more information for
MacroFlow
MacroFlow is very well suited for rapid flow and thermal design of a variety of air- and liquid-cooled systems in Computer, Telecom, Defense, and Power electronics applications. The component library in MacroFlow includes many electronics-cooling components such as Fan and Pump, Heat sink, Cold Plate, and Heat Exchanger, Air Filter, Screen, and Quick Disconnect. Since MacroFlow-based analysis is very simple and fast, its use allows determination of a good system design early in the design cycle.
Flow and thermal characteristics of the components can be defined by specifying their geometry for utilizing built-in correlations or through direct specification in suitable functional forms. In addition, characteristics of off-the-shelf products offered by leading vendors can be chosen from the embedded libraries for Heat Exchangers and Cold Plates from Lytron, Quick Disconnects from Aeroquip, Fans from Dynamic Air Engineering, Comair-Rotron and JMC Products, and Air Filters from Universal Air Filter.
The features and capabilities of MacroFlow include:
MacroFlow is ideally suited for system-level thermal design during the Conceptual Design stage. Its object-oriented nature enables quick construction of flow networks of cooling systems and the powerful solution method enables rapid analysis. Thus, many different system layouts, “what if” studies, and contingencies such as fan failure can be evaluated very quickly for arriving at few good system-level design early in the design cycle. MacroFlow is a productivity tool. Its use results in significantly shorter design cycles, better product quality, and reduces the time to market.
Practical electronics cooling systems can be represented as a network of components such as ducts, heat sinks, screens, filters, passages within card arrays, fans, bends, and tee junctions. Interconnections of these components correspond to the paths followed by the coolant as it passes through the system. Flow and thermal characteristics of individual components are obtained from handbooks, laboratory testing, and vender data. The emphasis of FNM is the analysis of the interaction among the components for determining the system performance. Therefore, prediction of the details of flow and heat transfer within a component is not attempted.
MacroFlow is applicable to the design and analysis of system level cooling for electronics used in: computers, data processing, telecommunications, military and commercial avionics, automotive and transportation equipment, consumer goods, and medical applications. MacroFlow can be applied to open or closed systems, air or liquid cooling, and forced or natural convection for:
FNM offers a simple, quick, and accurate method for flow and thermal performance of electronics systems. Some of the benefits it offers for system-level thermal design are described below.
The user should also be aware of the following limitations of this approach and use CFD where applicable:
An enhanced design cycle that incorporates FNM in the early design stage, is shown in the flow chart below. Use of FNM for Conceptual System Design significantly reduces the effort that is otherwise required for system-level thermal analysis. CFD can then be used in a focused manner for detailed analysis of flow distribution and component temperatures in critical parts of a system or in specific competing system designs. The proposed design cycle significantly shortens the time required for arriving at the final design and improves the quality of the product by enabling the thermal engineer to explore more design options. Thus, use of FNM improves the productivity in the thermal design process and results in an optimum design cycle.